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Abstract:
Omic data are characterized by the presence of strong dependence structures that result either from data ac-
quisition or from some underlying biological processes. Applying statistical procedures that do not adjust the
variable selection step to the dependence pattern may result in a loss of power and the selection of spurious vari-
ables. The goal of this paper is to propose a variable selection procedure within the multivariate linear model
framework that accounts for the dependence between the multiple responses. We shall focus on a specific type
of dependence which consists in assuming that the responses of a given individual can be modelled as a time
series. We propose a novel Lasso-based approach within the framework of the multivariate linear model taking
into account the dependence structure by using different types of stationary processes covariance structures for
the random error matrix. Our numerical experiments show that including the estimation of the covariance ma-
trix of the random error matrix in the Lasso criterion dramatically improves the variable selection performance.
Our approach is successfully applied to an untargeted LC-MS (Liquid Chromatography-Mass Spectrometry)
data set made of African copals samples. Our methodology is implemented in the R package MultiVarSel
which is available from the Comprehensive R Archive Network (CRAN).
Keywords: metabolomics, multivariate linear model, time series, variable selection
DOI: 10.1515/sagmb-2017-0077

1 Introduction

Metabolomics aims to provide a global snapshot (quantitative or qualitative) of the metabolism at a given time
and by extension phenotypic information (see Nicholson, Lindon & Holmes , 1999). It studies the concentra-
tion of small molecules called metabolites that are the end products of the enzymatic machinery of the cell.
Indeed, minor variations in gene or protein expression levels that are not observable via high throughput exper-
iments may have an influence on the metabolites and hence on the phenotype of interest. Thus, metabolomics
is a promising approach that can advantageously complement usual transcriptomic and proteomic analyses.
For further details on metabolomics, we refer the reader to Smith, Mathis, and Prince (2014). The analysis of
the metabolomic biological samples is often performed using High Resolution Mass Spectrometry (HRMS),
Nuclear Magnetic Resonance (NMR) or Liquid Chromatography-Mass Spectrometry (LC-MS) and produces a
large number of features (hundreds or thousands) that can explain a difference between two or more popula-
tions (see Zhang et al., 2012). It is well-known in the untargeted LC-MS data analysis that the identification of
metabolites discriminating these populations remains a major bottleneck and therefore the selection of relevant
features (metabolites) is a crucial step, as explained in Verdegem et al. (2016). Our goal is to tackle the task of
feature selection by taking advantage of the specificities of the LC-MS spectra.

We consider a typical untargeted metabolomic experiment where LC-MS spectra (intensity vs. m/z) are
obtained from n samples, resulting in an n × q data matrix where the q columns are ordered according to their
m/z ratio. Note that the abbreviation m/z represents the quantity formed by dividing the ratio of the mass of
an ion to the unified atomic mass unit, by its charge number (regardless of sign). Figure 1 displays an example
of such a spectrum. It has to be noticed that the data were first pre-processed using the methodology described
in Section 4.1. We further assume that the n samples are collected under C conditions and denote nc the number
of samples from Condition c, hence ∑c nc = n. Multivariate ANOVA (MANOVA, see e.g. Mardia, Kent & Bibby
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, 1979; Muller & Stewart, 2006) provides a natural framework to analyze such a data set. Denoting 𝑌𝑌𝑌𝑐,𝑟 the q-
dimensional vector corresponding to the spectrum from the rth replicate in Condition c, the MANOVA model
assumes that

𝑌𝑌𝑌𝑐,𝑟 = 𝜇𝜇𝜇𝑐 + 𝐸𝐸𝐸𝑐,𝑟, (1)

where 𝝁c is the theoretical mean spectrum in Condition c and 𝐸𝐸𝐸𝑐,𝑟 is a random q-dimensional error vector. Each
metabolite corresponds to a given component of these three vectors. A “relevant” feature is then defined as the
jth m/z value, the theoretical concentration 𝜇(𝑗)

𝑐 of which significantly varies between conditions. Stacking the
row vectors 𝑌𝑌𝑌𝑐,𝑟 and 𝐸𝐸𝐸𝑐,𝑟, the MANOVA model can be rephrased as follows:

𝑌𝑌𝑌 = 𝑋𝑋𝑋𝐵𝐵𝐵 + 𝐸𝐸𝐸, (2)

where 𝑌𝑌𝑌 = (𝑌𝑖,𝑗)1≤𝑖≤𝑛, 1≤𝑗≤𝑞 is the n × q observation matrix, X is the n × C design matrix of a one-way ANOVA
model, 𝐵𝐵𝐵= (𝜇(𝑗)

𝑐 )1≤𝑐≤𝐶, 1≤𝑗≤𝑞 is the C × q coefficient matrix and 𝐸𝐸𝐸 = (𝐸𝑖,𝑗)1≤𝑖≤𝑛, 1≤𝑗≤𝑞 is the n × q random er-
ror matrix. Observe that C corresponds to the number of covariates. For notational simplicity, the samples
indexed with (c, r) are now identified with a single index i ∈ {1, …, n}, starting with the n1 samples from Condi-
tion c = 1, then the n2 samples from Condition c = 2, etc. In this framework, assuming that the mean spectrum
𝜇𝜇𝜇 = 𝑛−1 ∑𝑛 𝑛𝑐𝜇𝜇𝜇𝑐 is set to zero, the problem of determining which metabolites are relevant boils down to finding
the non null coefficients in the matrix B and hence can be seen as a variable selection problem in the multivari-
ate linear model. Several approaches can be considered for solving this task: either a posteriori methods such as
classical statistical tests in ANOVA models (see Mardia, Kent & Bibby , 1979; Faraway, 2004) or methods embed-
ding the variable selection such as Lasso-type methodologies (Tibshirani, 1996). However, a naive application
of such approaches does not take into account the potential dependence between the different columns of Y,
which may affect the identification of the relevant features. This drawback will be illustrated in Section 3.

Figure 1: An example of a LC-MS spectrum (an instance of Yc,r) (top), the same spectrum centered and normalized (mid-
dle) and its empirical autocorrelation function (bottom).

Different supervised machine learning approaches have been used to analyze “omics” data during the last
few years (see Saccenti et al., 2013; Ren et al., 2015; Boccard & Rudaz, 2016; Zhang et al., 2017). Among them, in
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metabolomics, the most popular is the partial least squares-discriminant analysis (PLS-DA) which has recently
been extended to sPLS-DA (sparse partial least squares-discriminant analysis) by Lê Cao, Boitard, and Besse
(2011) to include a variable selection step.

The originality of our approach lies in the modeling of the dependence that exists among the columns of Y
which comes from the fact that usually biomarkers share biosynthetic pathways (Audoin et al. 2014). To account
for this dependence, we assume that the samples are all independent, namely, all the rows of E are independent
and for each sample i, the noise vector Ei has a multivariate Gaussian distribution:

𝐸𝐸𝐸𝑖 = (𝐸𝑖,1, … , 𝐸𝑖,𝑞) ∼ 𝒩 (0,ΣΣΣ𝑞), (3)

where 𝚺q denotes the covariance matrix. The simplest assumption regarding the covariance matrix isΣΣΣ𝑞 = 𝜎2𝐼𝐼𝐼𝑞,
where Iq denotes the q × q identity matrix. In this case the different columns of Y are assumed to be indepen-
dent. The other extreme assumption consists in letting 𝚺q free, assuming no specific form for this dependence.
However, in such a situation, q(q + 1)/2 parameters should be estimated which is not possible when n < q,
which is the most standard case. Our approach lies in between, assuming that some dependence exists but that
it has a specific structure. The form we consider is motivated by the nature of LC-MS spectra, which can be seen
as random functions of the m/z ratio. This suggests to consider each random vector Ei as a time-series and to
borrow classical dependence structure from time-series analysis to model 𝚺q. This approach is consistent with
the fact that the empirical autocorrelation function of LC-MS spectra (see Figure 1 for an example) displays the
typical characteristics of most time-series such as vanishing autocorrelation when the lag increases.

On top of accounting for the dependence between the columns of Y, our methodology can deal with a
potentially high number of features (columns of Y) thanks to the underlying Lasso-based feature selection and
the modeling of the dependence which produces sparse estimates of ΣΣΣ−1

𝑞 . We also couple the whole procedure
to a stability selection step to ensure robustness of the selected features. This methodology is implemented in
the R package MultiVarSel which is available from the Comprehensive R Archive Network (CRAN).

The rest of the paper is organized as follows. Our method is described in Section 2. Some numerical exper-
iments on synthetic data are provided in Section 3. Finally, an application to a metabolomic data set made of
African copals samples is given in Section 4.

2 Statistical inference

The strategy that we propose can be summarized as follows.

– First step: Fitting a one-way ANOVA to each column of the matrix Y in order to have access to an estimation
�̂�𝐸𝐸 of the error matrix E.

– Second step: Estimating the matrix 𝚺q by using the methods described in Sections 2.1.1 and 2.1.2. Then,
choosing the most convenient estimator ̂ΣΣΣq thanks to a statistical test described in Section 2.1.3.

– Third step: Thanks to ̂ΣΣΣq, transforming the data in order to remove the dependence between the columns of
Y. Such a transformation will be called “whitening” hereafter.

– Fourth step: Applying to the transformed observations the Lasso approach described in Section 2.2.

The first step provides a first estimate 𝐵𝐵𝐵 of B. An estimate of E is then defined as

�̂�𝐸𝐸 = 𝑌𝑌𝑌 − 𝑋𝑋𝑋𝐵𝐵𝐵. (4)

In the following, we shall focus on the three other steps.

2.1 Estimation of the dependence structure of E

We propose hereafter to model each row of E as a realization of a stationary process and hence we shall use
time-series models in order to describe the dependence structure of E. We refer the reader to Brockwell and
Davis (1991) for further details on time series modeling.
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We shall consider a large variety of models ranging from the simplest parametric to the most general non-
parametric dependence modeling. In each case we focus on the estimation ofΣΣΣ−1/2

𝑞 since the use of the following
transformation:

𝑌𝑌𝑌 ΣΣΣ−1/2
𝑞 = 𝑋𝑋𝑋𝐵𝐵𝐵 ΣΣΣ−1/2

𝑞 + 𝐸𝐸𝐸 ΣΣΣ−1/2
𝑞 (5)

removes the dependence between the columns of Y. Indeed the covariance matrix of each row of 𝐸𝐸𝐸ΣΣΣ−1/2
𝑞 is now

equal to the identity matrix. Such a procedure will be called “whitening” hereafter.

2.1.1 Parametric dependence

The simplest model among the parametric models is the autoregressive process of order 1 denoted AR(1). More
precisely, for each i in {1, …, n}, Ei,t satisfies the following equation:

𝐸𝑖,𝑡 − 𝜙1𝐸𝑖,𝑡−1 = 𝑊𝑖,𝑡, with 𝑊𝑖,𝑡 ∼ 𝑊𝑁(0, 𝜎2), (6)

where |𝜙1| < 1 and WN(0, σ2) denotes a zero-mean white noise process of variance σ2, defined as follows,

𝑍𝑡 ∼ 𝑊𝑁(0, 𝜎2) if
⎧{{
⎨{{⎩

𝔼(𝑍𝑡) = 0,
𝔼(𝑍𝑡𝑍𝑡′) = 0 if 𝑡 ≠ 𝑡′,
𝔼(𝑍2

𝑡) = 𝜎2.
� (7)

Note that the closer to one the parameter ϕ1 the stronger the dependence between the Ei,t’s.
In this case, the inverse of the square root of the covariance matrix 𝚺q of (Ei,1, … , Ei,q) has a simple closed-

form expression given by

ΣΣΣ−1/2
𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√1 − 𝜙2
1 −𝜙1 0 ⋯ 0

0 1 −𝜙1 ⋯ 0
0 0 ⋱ ⋱ ⋮
⋮ ⋮ ⋱ ⋱ −𝜙1
0 0 ⋯ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (8)

Hence, to obtain the expression of ̂ΣΣΣ−1/2
𝑞 , it is enough to have an estimation of the parameter ϕ1 and to replace

it in (8). For this, we use the estimator �̂�𝐸𝐸 defined in (4) and obtained by fitting a standard ANOVA model to the
observations, which corresponds to the first step of our method. Then ϕ1 is estimated by 𝜙1 defined by

𝜙1 = 1
𝑛

𝑛
∑
𝑖=1

𝜙1,𝑖,

where 𝜙1,i denotes the estimator of ϕ1 obtained by the classical Yule-Walker equations from (�̂�𝑖,1, … , �̂�𝑖,𝑞), see
Brockwell and Davis (1991) for more details.

More generally, it is also possible to have access to ΣΣΣ−1/2
𝑞 for more complex processes such as the ARMA(p,

q) process defined as follows: For each i in {1, … , n},

𝐸𝑖,𝑡 − 𝜙1𝐸𝑖,𝑡−1 − … − 𝜙𝑝𝐸𝑖,𝑡−𝑝 = 𝑊𝑖,𝑡 + 𝜃1𝑊𝑖,𝑡−1 + … 𝜃𝑞𝑊𝑖,𝑡−𝑞, (9)

where 𝑊𝑖,𝑡 ∼ 𝑊𝑁(0, 𝜎2), the ϕi’s and the θi’s are real parameters.

2.1.2 Nonparametric dependence case

In the situation where a parametric modeling is not relevant for 𝚺q, it can be estimated by
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̂ΣΣΣ𝑞 =
⎛⎜⎜⎜⎜⎜⎜
⎝

�̂�(0) �̂�(1) ⋯ �̂�(𝑞 − 1)
�̂�(1) �̂�(0) ⋯ �̂�(𝑞 − 2)

⋮
�̂�(𝑞 − 1) �̂�(𝑞 − 2) ⋯ �̂�(0)

⎞⎟⎟⎟⎟⎟⎟
⎠

, (10)

with

�̂�(ℎ) = 1
𝑛

𝑛
∑
𝑖=1

�̂�𝑖(ℎ),

where �̂�𝑖(ℎ) is the standard autocovariance estimator of 𝛾𝑖(ℎ) = 𝔼(𝐸𝑖,𝑡𝐸𝑖,𝑡+ℎ), for all t. Usually, �̂�𝑖(ℎ) is referred
to as the empirical autocovariance of the �̂�𝑖,𝑡’s at lag h (i.e. the empirical covariance between (�̂�𝑖,1, … , �̂�𝑖,𝑛−ℎ)
and (�̂�𝑖,ℎ+1, … , �̂�𝑖,𝑛)). For a definition of the standard autocovariance estimator we refer the reader to Chapter
7 of Brockwell and Davis (1991). The matrix ̂ΣΣΣ−1/2

𝑞 is then obtained by inverting the Cholesky factor of ̂ΣΣΣ𝑞.

2.1.3 Choice of the whitening modeling

In order to decide which dependence modeling better fits the data at hand we propose hereafter a statistical
test. If the whitening modeling used is well chosen then each row of 𝐸𝐸𝐸 = �̂�𝐸𝐸 ̂ΣΣΣ−1/2

𝑞 should be a white noise as
defined in (7), where �̂�𝐸𝐸 is defined in (4).

One of the most popular approaches for testing whether a random process is a white noise or not, is the
Portmanteau test which is based on the Bartlett theorem (for further details we refer the reader to Brockwell &
Davis, 1991, Theorem 7.2.2). By this theorem, we get that under the null hypothesis (H0): “For each i in {1, … ,
n}, (𝐸𝑖,1, … , 𝐸𝑖,𝑞) is a white noise”,

𝑞
𝐻

∑
ℎ=1

̂𝜌𝑖(ℎ)2 ≈ 𝜒2(𝐻), as 𝑞 → ∞, (11)

for each i in {1, … , n}, where ̂𝜌𝑖(ℎ) denotes the empirical autocorrelation of (𝐸𝑖,1, … , 𝐸𝑖,𝑞) at lag h and χ2(H)
denotes the chi-squared distribution with H degrees of freedom. Thus, by (11), we have at our disposal a p-
value for each i in {1, … , n} that we denote by Pvali. In order to have a single p-value instead of n, we shall
consider

𝑞
𝑛

∑
𝑖=1

𝐻
∑
ℎ=1

̂𝜌𝑖(ℎ)2 ≈ 𝜒2(𝑛𝐻), as 𝑞 → ∞, (12)

where the approximation comes from the fact that the rows of 𝐸𝐸𝐸 are assumed to be independent. Equation (12)
thus provides a p-value: Pval. Hence, if Pval < α, the null hypothesis (H0) is rejected at the level α, where α is
usually equal to 5and a large value of Pval indicates that the modeling for the dependence structure of E is well
chosen.

2.2 Estimation of B

2.2.1 Lasso based approach

Let us first explain briefly the usual framework in which the Lasso approach is used. We consider a high-
dimensional linear model of the following form

𝒴 = 𝒳ℬ + ℰ , (13)

where 𝒴, ℬ and ℰ are vectors. Note that, in high-dimensional linear models, the matrix 𝒳 has usually more
columns than rows which means that the number of variables is larger than the number of observations but ℬ
is usually a sparse vector, namely it contains a lot of null components.
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In such models a very popular approach initially proposed by Tibshirani (1996) is the Least Absolute Shrink-
age and Selection Operator (LASSO), which is defined as follows for a positive λ:

ℬ̂(𝜆) = argminℬ {‖𝒴 − 𝒳ℬ‖22 + 𝜆‖ℬ‖1} , (14)

where, for 𝑢 = (𝑢1, … , 𝑢𝑛), ‖𝑢‖22 = ∑𝑛
𝑖=1 𝑢2

𝑖 and ‖𝑢‖1 = ∑𝑛
𝑖=1 |𝑢𝑖|, i.e. the ℓ1-norm of the vector u. Observe that

the first term of (14) is the classical least-squares criterion and that 𝜆‖ℬ‖1 can be seen as a penalty term. The
interest of such a criterion is the sparsity enforcing property of the ℓ1-norm ensuring that the number of non-
zero components of the estimator ℬ̂ of ℬ is small for large enough values of λ.

This methodology cannot be directly applied to our model since we have to deal with matrices and not with
vectors. Nevertheless, as explained in Appendix A, Model (2) can be rewritten as in (13) where 𝒴, ℬ and ℰ are
vectors of size nq, pq and nq, respectively. Hence, retrieving the positions of the non null components in ℬ is a
first approach for finding relevant variables. However, this approach does not take into account the dependence
between the columns of Y. Hence, we propose hereafter a modified version of the standard Lasso criterion (14)
taking into account this potential dependence.

As explained previously, our contribution consists first in “whitening” the observations, namely removing
the dependence that may exist within the observations matrix, by multiplying (2) on the right by ̂ΣΣΣ−1/2

𝑞 , see (5)
where ΣΣΣ−1/2

𝑞 is replaced by ̂ΣΣΣ−1/2
𝑞 . By using the same vectorization trick that allows us to transform Model (2)

into Model (13), the Lasso criterion can be applied to the vectorized version of Model (5) whereΣΣΣ−1/2
𝑞 is replaced

by ̂ΣΣΣ−1/2
𝑞 . The specific expressions of 𝒴, 𝒳, ℬ and ℰ are given in Appendix B.

Note that this idea of “whitening” the observations has also been proposed by Rothman, Levina, and Zhu
(2010) where the estimation of 𝚺q and B is performed simultaneously. An implementation is available in the R
package MRCE. In our approach, 𝚺q is estimated first and then its estimator is used in (5) instead of 𝚺q before
applying the Lasso criterion. Hence, our method can be seen as a variant of the MRCE method in which 𝚺q is
estimated beforehand. Moreover, after some numerical experiments, we observed that for the values of n and q
that we aim at using, the computational burden of the approach designed by Rothman, Levina, and Zhu (2010)
is too high for addressing our datasets for fixed regularization parameters, contrary to ours. In addition, in
practical situations, the regularization parameters of the MRCE approach have to be tuned. As a consequence,
we have not been able to use the MRCE approach for the purpose we consider here.

2.2.2 Model selection issue

Estimator (14) depends on a parameter λ which tunes the sparsity level in ℬ̂. We propose to mix two standard
approaches to estimate the positions of the non null components in ℬ: the 10-fold cross-validation method and
the stability selection approach of Meinshausen and Buhlmann (2010) which guarantees the robustness of the
selected variables.

We first divide our samples into ten groups and remove one group from the dataset thus creating 10 training
sets: 𝑌𝒟1 , … , 𝑌𝒟10 . For each training set 𝑌𝒟𝑘 , we apply the first three steps of our approach and the Lasso criterion
with a 10-fold cross-validation procedure to get 𝜆(𝑘)

𝐶𝑉 . Then, we randomly select a subsample of size q × nk/2,
where q × nk denotes the size of the vector of observations 𝒴 𝒟𝑘 = Vec(𝑌𝒟𝑘). We then apply the Lasso criterion
to this subsample with 𝜆 = 𝜆(𝑘)

𝐶𝑉 and store the indices i of the non null �̂�i. This random selection of a subsample
of the training set and the application of the Lasso criterion are repeated N times. At the end, we have access to
the number of times 𝑁(𝑘)

𝑖 where each component �̂�i is non null among the N replications for each group k. We
only keep in the final set of selected variables the indices i such that (∑10

𝑘=1(𝑁(𝑘)
𝑖 /𝑁))/10 is larger than a given

threshold. The influence of N and the choice of the threshold will be investigated in Section 3.
For some theoretical results supporting our approach we refer the reader to Perrot-Dockès et al. (2018).

3 Simulation study

The goal of this section is to assess the statistical performance of our methodology implemented in the R pack-
age MultiVarSel. In order to emphasize the benefits of using a whitening approach from the variable selec-
tion point of view, we shall first compare our approach to standard methodologies. Then, we shall analyze the
performance of our statistical test for choosing the best dependence modeling. Finally, we shall investigate the
performance of our model selection criterion.
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To assess the performance of the different methodologies, we generate observations Y according to Model
(2) with q = 1000, p = 3, n = 30 (n1 = 9, n2 = 8 and n3 = 13) and different dependence modelings, namely different
matrices 𝚺q corresponding to the AR(1) model described in (6) with σ = 1 and ϕ1 = 0.7 or 0.9. Note that the
values of the parameters p, q and n are chosen in order to match the metabolomic data analyzed in Section 4.

We shall also investigate the effect of the sparsity and of the signal to noise ratio (SNR). The sparsity level
s corresponds to the proportion of non null elements in ℬ. Different signal to noise ratios are obtained by
multiplying B in (2) by a coefficient κ.

3.1 Variable selection performance

The goal of this section is to compare the performance of our different whitening strategies to standard existing
methodologies. More precisely, we shall compare our approaches to the classical ANOVA method (denoted
ANOVA), the standard Lasso (denoted Lasso), namely the Lasso approach without the whitening step and to
sPLSDA (Lê Cao, Boitard & Besse , 2011), implemented in the mixOmics R package and also in MetaboAnalyst,
which is widely used in the metabolomics field. By ANOVA, we mean the classical one-way ANOVA applied to
each column of the observations matrix Y without taking the dependence into account. Our different whitening
approaches (described in Sections 2.1.1 and 2.1.2) are denoted by AR1 and Nonparam. These methods are also
compared to the Oracle approach where the matrix 𝚺q is known, which is never the case in practical situations.

We shall use three classical criteria for comparison: ROC curves, AUC (Area Under the ROC Curve) and
Precision-Recall (PR) curves. ROC curves display the true positive rates (TPR) as a function of the false positive
rates (FPR) and the closer to one the AUC the better the methodology. PR curves display the Precision as a
function of the Recall. Since the features selected by sPLSDA are not assigned to a given condition c, we shall
consider that as soon as a feature is selected it is a true positive, which gives a great advantage to sPLSDA.

We can see from Figure 2, Figure 3 and Table 1 that in the case of an AR(1) dependence, taking into account
this dependence provides better results than sPLSDA and than approaches that consider the columns of the
matrix E as independent. Moreover, we observe that the performance of the non parametric modeling are on a
par with those of the parametric and the oracle ones. We also note that the larger the sparsity level s the smaller
the difference of performance between the approaches. As expected, the larger the signal to noise ratio κ the
better the performance of the different methodologies. We also conducted numerical experiments in a balanced
one-way ANOVA framework. Since the conclusions are similar, we did not report the results here but they are
available upon request.

Figure 2: Means of the ROC curves obtained from 200 replications for the different methodologies in the AR(1) depen-
dence modeling; κ is linked to the signal to noise ratio (first row: κ = 1, second row κ = 2); ϕ1 is the correlation level in the
AR(1) and s the sparsity level (i.e. the fraction of nonzero elements in B).
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Figure 3: Means of the precision-recall curves obtained from 200 replications for the different methodologies in the AR(1)
dependence modeling; κ is linked to the signal to noise ratio (first row: κ = 1, second row κ = 2); ϕ1 is the correlation level
in the AR(1) and s the sparsity level (i.e. the fraction of nonzero elements in B).

Table 1: AUC of the different methods corresponding to Figure 2.

SNR ϕ1 s Lasso ANOVA AR1 Nonpar Oracle sPLSDA

1 0.7 0.01 0.78 0.78 0.83 0.84 0.84 0.73
1 0.7 0.3 0.74 0.74 0.80 0.80 0.80 0.72
1 0.9 0.01 0.63 0.64 0.83 0.83 0.83 0.58
1 0.9 0.3 0.63 0.64 0.77 0.77 0.77 0.61
2 0.7 0.01 0.91 0.91 0.95 0.95 0.95 0.86
2 0.7 0.3 0.85 0.85 0.88 0.88 0.88 0.84
2 0.9 0.01 0.77 0.77 0.91 0.91 0.91 0.72
2 0.9 0.3 0.75 0.76 0.86 0.86 0.86 0.74

3.2 Choice of the dependence modeling

The goal of this section is to assess the performance of the whitening test proposed in Section 2.1.3. We generated
observations Y as described at the beginning of Section 3, with AR(1) dependence, a sparsity level s = 0.01 and
SNR such that κ = 1. The corresponding results are displayed in Figure 4.

Figure 4: Means and standard deviations of the p-values of the test described in Section 2.1.3 of the main paper for the
different approaches in the AR(1) dependence modeling when ϕ1 = 0.7 (left) and ϕ1 = 0.9 (right).

We observe that our test behaves properly: it provides p-values close to zero in the case where no whitening
strategy is used (Lasso) and that when one of the proposed whitening approaches is used the p-values are larger
than 0.7.

3.3 Choice of the model selection criterion

We investigate here the performance of our model selection criterion described in Section 2.2.2. Figure 5 displays
the TPR and the FPR for different values N of the sampling replicates and different thresholds. We can see from
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this figure than taking N larger than 1000 and a threshold of 0.999 ensures a small false positive rate and a large
true positive rate.

Figure 5: Influence of the number of replications N and of the threshold.

Bullets (‘•’) in Figure 6 show the positions of the variables selected by our four-step approach for two pos-
sible thresholds (0.999 and 1) from N = 1000 replications. The positions of the non null coefficients in B are
displayed with ‘+’. Here Y is generated with the parameters described at the beginning of Section 3 in the case
of an AR(1) dependence with ϕ1 = 0.9 and κ = 10. We observe from this figure that the positions of the non null
coefficients are recovered for both thresholds. However, the performance are slightly better when the threshold
is equal to 0.999.

Figure 6: Positions of the variables selected by our approach (‘•’) when κ = 10.
Values on the y-axis correspond to the 3 conditions. The results obtained when the threshold is equal to 0.999 (resp. 1) are
on the left (resp. on the right). The size of the bullets is all the more large that the selection frequency is high.

3.4 Numerical performance

In order to investigate the computational burden of our approach, we generated matrices Y satisfying Model
(2) with n = 30 and q ∈ {100, 1000, 2000, … , 5000}. Here, the rows of the matrix E are generated as realizations
of an AR(1) process and the level of sparsity s of B is equal to 0.01. Figure 7 displays the computational times
of MultiVarSel, including the model selection step described in Section 2.2.2, for different number of repli-
cations in the stability selection stage. Timings were obtained on a workstation with 16 GB of RAM and Intel
Core i7 (3.66GHz) CPU, using 8 cores for parallel computing. Our implementation uses the R language (R Core
Team, 2017) and relies on the glmnet and Matrix packages (Friedman, Hastie & Tibshirani , 2010; Bates &
Maechler, 2017). We can see from this figure that the computational burden of MultiVarSel is very low and
that it takes only a few minutes to analyze matrices having 5000 columns.
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Figure 7: Computational times (in seconds) of MultiVarSel.
The number of replications corresponds to the number N of subsamplings in the stability selection step.

4 Application to the analysis of a LC-MS data set

In this section, MultiVarSel is applied to a LC-MS (Liquid Chromatography-Mass Spectrometry) data set
made of African copals samples. The samples correspond to ethanolic extracts of copals produced by trees be-
longing to two genera Copaifera (C) and Trachylobium (T) with a second level of classification coming from the
geographical provenance of the Copaifera samples (West (W) or East (E) Africa). Since all the Trachylobium sam-
ples come from East Africa, we can use the modeling proposed in Equations (1) and (2) with C = 3 conditions:
CE, CW and TE such that nCE = 9, nCW = 8 and nTE = 13. Our goal is to identify the most important features
(the m/z values) for distinguishing the different conditions. In this section, we also compare the performance
of our method with those of other techniques which are widely used in metabolomics.

4.1 Data pre-processing

LC-MS chromatograms were aligned using the R package XCMS proposed by Smith et al. (2006) with the follow-
ing parameters: a signal to noise ratio threshold of 10:1 for peak selection, a step size of 0.2 min and a minimum
difference in m/z for peaks with overlapping retention times of 0.05 amu. Sample filtering was also performed:
To be considered as informative, as suggested by Kirwan et al. (2013), a peak was required to be present in
at least 80% of the samples. Missing values imputation was realized using the KNN algorithm described in
Hrydziuszko and Viant (2012). Subsequently, the spectra were normalized to equalize signal intensities to the
median profile in order to reduce any variance arising from differing dilutions of the biological extracts and
probabilistic quotient normalization (PQN) was used, see Dieterle et al. (2006) for further details. In order to
reduce the size of the data matrix which contains 6327 metabolites, selection of the adducts of interest [M+H]+

was then performed using the CAMERA package of Kuhl et al. (2012). A n × q matrix Y was then obtained with
q = 1019 and submitted to the statistical analyses.

4.2 Application of our four-step approach

The observations matrix Y is first centered and scaled.

– First step: A one-way ANOVA is fitted to each column of the observation matrix Y in order to have access
to an estimation �̂�𝐸𝐸 of the matrix E. Then, the test proposed in Section 2.1.3 is applied to �̂�𝐸𝐸 that is without
“whitening” the observations. We found a p-value equal to zero which indicates that the columns of �̂�𝐸𝐸 cannot
be considered as independent and hence that applying the whitening strategy should improve the results.

– Second step: The different whitening strategies described in Section 2.1 were applied and the highest p-value
for the test described in Section 2.1.3 is obtained for the nonparametric whitening. More precisely, the p-
values obtained for the AR(1) and the nonparametric dependence modeling are equal to 0 and 0.664, re-
spectively. Hence, in the following we shall use the nonparametric modeling.

– Third step: Observations were whitened with ̂ΣΣΣ𝑞 obtained by using the nonparametric modeling.
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– Fourth step: The Lasso approach described in Section 2.2 was then applied to the whitened observations. The
stability selection is used with N = 1000 replications and a threshold equal to 0.999.

Figure 8 displays the Venn diagram of the features (m/z values) selected for each condition CE, TE and CW.
Among the 1019 features, 98 features have been selected by MultiVarSel: 77 have been selected for Condition
TE, 28 for Condition CW and 5 for Condition CE. Note that there were no features selected for all the conditions,
10 for both TE and CW and 2 for both CW and CE.

Figure 8: Venn diagram of the features selected for each condition by MultiVarSel.

4.3 Comparison with existing methods

The goal of this section is to compare our approach with the sparse partial least square discriminant analysis
(sPLS-DA) which is classically used in metabolomics.

4.3.1 Additional simulations

Since in the case of real data, the position of the relevant features is of course unknown, we propose the fol-
lowing additional simulations in order to further compare these two approaches. We start by applying the first
step of our approach in order to get �̂�𝐸𝐸. Then, we perform M random samplings with replacement among the
rows of �̂�𝐸𝐸. Let E⋆ denote one of them, then we generate a new observation matrix 𝑌𝑌𝑌⋆ = 𝑋𝑋𝑋⋆𝐵𝐵𝐵 + 𝐸𝐸𝐸⋆, where X⋆ is
the same as X except that its rows are permuted in order to ensure a correspondence between the rows of E⋆

and X⋆. The matrix B is obtained as in Section 3 with s = 0.01 and κ = 0.5 and 1. ROC curves averaged over M
= 50 random samplings are displayed in Figure 9. We can see from this figure that our approach outperforms
the classical ones. Other values of s and κ have been tested. The corresponding results are not reported here but
available upon request.

Figure 9: Means of the ROC curves obtained by MultiVarSel, Lasso and sPLS-DA.

4.3.2 Results on the LC-MS data set

As recommended by Lê Cao, Boitard, and Besse (2011), we used two components for sPLS-DA. Moreover, in
order to make sPLS-DA comparable with our approach, 49 variables are kept for each component. However, as
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explained in Section 3, the main difference between our approach and sPLSDA is that the features selected by
sPLSDA are not assigned to a given condition c, and thus less interpretable.

Figure 10 displays the location of the features (m/z values) selected by our approach and sPLS-DA. We can
see from this figure that the features selected for the condition TE are mainly located between 400 and 500 m/z
whereas those selected for the condition CE are around 600 m/z. The features selected by the first component of
the sPLS-DA are also mainly located between 400 and 500 m/z. However, as previously explained, the features
selected by sPLSDA are assigned to a component built by the method and not to a condition of the experimental
design. Venn diagrams comparing the features selected by both methods are available in Figure 11. We observe
from these Venn diagrams that the features selected in each component of sPLS-DA do not characterize the
conditions of the MANOVA model contrary to ours.

Figure 10: Comparison of the features selected by MultiVarSel and sPLS-DA.

Figure 11: Venn diagrams comparing the features selected by MultiVarSel in the three conditions with those selected
by sPLS-DA in its two components.

5 Conclusion

In this paper, we proposed a novel approach for feature selection taking into account the dependence that
may exist between the columns of the observations matrix. Our approach is implemented in the R package
MultiVarSel which is available from The Comprehensive R Archive Network (CRAN). We have shown that
our method has two main features. Firstly, it is very efficient for selecting a restricted number of stable features
characterizing each condition. Secondly, its very low computational burden makes its use possible on very large
LC-MS metabolomics data.
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Appendix A

Let vec(A) denote the vectorization of the matrix A formed by stacking the columns of A into a single column
vector. Let us apply the  vec  operator to Model (2), then

𝑣𝑒𝑐(𝑌𝑌𝑌) = 𝑣𝑒𝑐(𝑋𝑋𝑋𝐵𝐵𝐵 + 𝐸𝐸𝐸) = 𝑣𝑒𝑐(𝑋𝑋𝑋𝐵𝐵𝐵) + 𝑣𝑒𝑐(𝐸𝐸𝐸).

Let 𝒴 = 𝑣𝑒𝑐(𝑌𝑌𝑌), ℬ = 𝑣𝑒𝑐(𝐵𝐵𝐵) and ℰ = 𝑣𝑒𝑐(𝐸𝐸𝐸). Hence,

𝒴 = 𝑣𝑒𝑐(𝑋𝑋𝑋𝐵𝐵𝐵) + ℰ = (I𝑞 ⊗ 𝑋𝑋𝑋)ℬ + ℰ ,

where we used that

𝑣𝑒𝑐(𝐴𝑋𝐵) = (𝐵′ ⊗ 𝐴)𝑣𝑒𝑐(𝑋),

see (Mardia, Kent & Bibby , 1979, Appendix A.2.5). In this equation, B′ denotes the transpose of the matrix B.
Thus,

𝒴 = 𝒳ℬ + ℰ ,

where 𝒳 = I𝑞 ⊗ 𝑋𝑋𝑋 and 𝒴, ℬ and ℰ are vectors of size nq, pq and nq, respectively.

Appendix B

Let us apply the vec operator to Model (5) where ΣΣΣ−1/2
𝑞 is replaced by ̂ΣΣΣ−1/2

𝑞 , then

𝑣𝑒𝑐(𝑌𝑌𝑌 ̂ΣΣΣ−1/2
𝑞 ) = 𝑣𝑒𝑐(𝑋𝑋𝑋𝐵𝐵𝐵 ̂ΣΣΣ−1/2

𝑞 ) + 𝑣𝑒𝑐(𝐸𝐸𝐸 ̂ΣΣΣ−1/2
𝑞 ) = (( ̂ΣΣΣ−1/2

𝑞 )′ ⊗ 𝑋𝑋𝑋)𝑣𝑒𝑐(𝐵𝐵𝐵) + 𝑣𝑒𝑐(𝐸𝐸𝐸 ̂ΣΣΣ−1/2
𝑞 ).

Hence,

𝒴 = 𝒳ℬ + ℰ ,

where 𝒴 = 𝑣𝑒𝑐(𝑌𝑌𝑌 ̂ΣΣΣ−1/2
𝑞 ), 𝒳 = ( ̂ΣΣΣ−1/2

𝑞 )′ ⊗ 𝑋𝑋𝑋 and ℰ = 𝑣𝑒𝑐(𝐸𝐸𝐸 ̂ΣΣΣ−1/2
𝑞 ).
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